Neuroprotective effects of pituitary adenylate cyclase-activating polypeptide (PACAP) in MPP+-induced alteration of translational control in Neuro-2a neuroblastoma cells.

نویسندگان

  • Julie Deguil
  • David Jailloux
  • Guylène Page
  • Bernard Fauconneau
  • Jean-Luc Houeto
  • Michel Philippe
  • Jean-Marc Muller
  • Stéphanie Pain
چکیده

UNLABELLED Parkinson's disease (PD) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxicity are both associated with dopaminergic neuron death in the substantia nigra. Although a variety of evidence has shown that degenerative cells have apoptotic features, the role of apoptosis in disease pathology remains controversial. The 1-methyl-4-phenylpyridinium ion (MPP(+)), a metabolite of MPTP, was recently shown to alter the expression of proteins involved in translational control. The initiation step of translational control is regulated by a cascade of phosphorylation affecting proteins of the antiapoptotic way controlled by mammalian target of rapamycin (mTOR) and of the proapoptotic way controlled by double-stranded RNA protein-dependent kinase (PKR). A study showed that MPP(+) induced an increase in eIF2alpha phosphorylation, leading to inhibition of protein synthesis. THE AIMS OF OUR STUDY WERE (1) to assess the effects of MPP(+) toxicity on molecular factors of PKR and mTOR signaling pathways in murine neuroblastoma cells, and (2) to examine the ability of VIP and PACAP peptides to counteract the MPP(+) toxicity. Our findings showed that MPP(+) induced phosphorylation of eIF2alpha and significantly reduced the expression of phosphorylated mTOR, p70S6K, eIF4E, and 4E-BP1, suggesting its toxicity in controlling protein synthesis. Furthermore, the VIP peptide had no effect on either the PKR or the mTOR signaling pathway. On the contrary, the PACAP 27 neuropeptide prevented MPP(+)-induced eIF2alpha phosphorylation and blocked MPP(+) toxicity in molecular factors of the mTOR pathway. And last, PACAP 27 seemed to protect Neuro-2a cells from the apoptotic process as assessed by the decreased nuclear condensation after DAPI staining. These results could open new paths of research of PACAP in PD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

VIP and PACAP analogs regulate therapeutic targets in high-risk neuroblastoma cells.

Neuroblastoma (NB) is a pediatric cancer. New therapies for high-risk NB aim to induce cell differentiation and to inhibit MYCN and ALK signaling in NB. The vasoactive intestinal peptide (VIP) and the pituitary adenylate cyclase-activating polypeptide (PACAP) are 2 related neuropeptides sharing common receptors. The level of VIP increases with NB differentiation. Here, the effects of VIP and PA...

متن کامل

Neuroprotective roles of pituitary adenylate cyclase-activating polypeptide in neurodegenerative diseases

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a pleiotropic bioactive peptide that was first isolated from an ovine hypothalamus in 1989. PACAP belongs to the secretin/glucagon/vasoactive intestinal polypeptide (VIP) superfamily. PACAP is widely distributed in the central and peripheral nervous systems and acts as a neurotransmitter, neuromodulator, and neurotrophic factor via t...

متن کامل

Characterizations of a synthetic pituitary adenylate cyclase-activating polypeptide analog displaying potent neuroprotective activity and reduced in vivo cardiovascular side effects in a Parkinson's disease model.

Parkinson's disease (PD) is characterized by a steady loss of dopamine neurons through apoptotic, inflammatory and oxidative stress processes. In that line of view, the pituitary adenylate cyclase-activating polypeptide (PACAP), with its ability to cross the blood-brain barrier and its anti-apoptotic, anti-inflammatory and anti-oxidative properties, has proven to offer potent neuroprotection in...

متن کامل

Pituitary adenylate cyclase-activating polypeptide (PACAP-38) protects cerebellar granule neurons from apoptosis by activating the mitogen-activated protein kinase (MAP kinase) pathway.

Pituitary adenylate cyclase-activating polypeptides (PACAP-27 and PACAP-38) are neuropeptides of the vasoactive intestinal polypeptide (VIP)/secretin/glucagon family. PACAP receptors are expressed in different brain regions, including cerebellum. We used primary culture of rat cerebellar granule neurons to study the effect of PACAP-38 on apoptosis induced by potassium deprivation. We demonstrat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neuroscience research

دوره 85 9  شماره 

صفحات  -

تاریخ انتشار 2007